Yearly energy consumption of transcritical CO₂ plants

Morten Juel Skovrup KVCA Seminar May, 2009

- A non-profit organisation at the TU of Denmark
- Research and development projects on contract

- 60 fulltime staff
- 60+ associated DTU staff
- Turnover: ~ 6 mill EUR/yr

... since 1956

Agenda

- Intro
- Simulation of yearly energy consumption
 - IPLV, SEER, ESEER...
 - Comparing different systems
- Demo Pack Calculation II
- Results
- Future...

- Calculation of yearly energy consumption is part of the project:
 - "Development and use of simulation tools for energy optimisation of refrigeration systems with CO2 as the refrigerant"
- 2007-2009

• Participants:

• Why?

- Systems seldom runs in dimensioned condition
- Most of the time:
 - Part load
 - Different ambient conditions
- This becomes important when:
 - You have to estimate the energy consumption of a system
 - · You have to compare two alternatives
 - When technologies and/or control are evaluated:
 - Variable speed compressor
 - Variable speed fans
 - Floating head

- Example
 - Compressor capacities are typically given at a certain rating condition:
 - For example EN12900, MBP: Te = -10, Tc = 45.
 - For R404A the gives a pressure ratio $\left(\frac{P_c}{P_{\rho}}\right)$ of 4.7...

• The evaporation temperature is often fixed by the application; but energy can be saved by letting the condensing temperature follow the ambient...

- So even though you save energy by lowering the condensing temperature, the efficiency of the compressor drops of, and you don't get the full potential for savings....
- There is a need to get away from "capacities at design condition" ...
 - It's notable that the efficiency for compressors often has it's maximum value at a standard dimensioning value for example EN12900...
- Standards which compensate for this are being developed.

- All are about constructing a yearly mean COP:
 - IPLV (Integrated Part Load Value)
 - Chiller, ARI Standard 550/590
 - SEER (Seasonal Energy Efficiency Ratio)
 - AC, ARI Standard 210/240
 - ESEER (European Seasonal Energy Efficiency Ratio)
 - Eurovent
- Partly common for all:
 - Power consumption is corrected for part load. Correction based on general compressor models
 - Runtimes for part load are based on assumptions for a large geographical area (climate in Stockholm equals Barcelona)
 - Most suited for systems where measuring yearly energy consumption is impractical (and calculation not possible).

- Common for these methods is also that they don't apply for CO2 systems!
 - CO₂ systems runs transcritical part of the year
 - Depends very much on geographical location
 - CO₂ systems are almost always in transcritical state at usual dimensioning states
 - And if you compare a traditional system with a CO2 system at a standard dimensioning state, the traditional will almost always have a lower energy consumption:

- CO₂ systems also appear to have some practical advantages that are not included in IPLV, SEER and ESEER calculations:
 - CO₂ compressors are a bit more effective than traditional but equally or more important, it looks as if the efficiency doesn't drop of as much at low pressure rations.
 - You can run with lower condensing temperatures than for traditional systems (pressure difference across expansion valve is not a problem)
 - A CO₂ condenser at subcritical operation is more effective than a traditional condenser.
 I.e. for the same costs you can run with a lower temperature difference than for a traditional condenser.
- So:
 - What you loose in transcritical operation in summer, you gain during subcritical operation in winter... depending on location... possibly... or???

• Different locations:

City	Transcritical [MWh]	Subcritical [MWh]	Savings, transcritical [%]
Stockholm	64,1	68,0	6
København	65,5	69,1	5
Amsterdam	70,6	72,0	2
Berlin	72,9	72,9	0
Paris	76,6	74,5	-3
Lyon	80,8	77,0	-5
Madrid	89,1	82,2	-8
Marseille	91,9	83,1	-11
Barcelona	93,1	83,1	-12
Rom	95,0	85,0	-12

Results

Ιρυ

• Equal conditions and condenser size:

	Transcritical	Subcritical	Difference
Totalt energiforbrug	79,5 MWh	69,1 MWh	+ 15 %

Results

• Equal conditions and condenser size. Only difference: Tc,min,subcritical = 20 C. Tc,min,transcritical = 10 C:

	Transcritical	Subcritical	Difference
Totalt energiforbrug	72,5 MWh	72,2 MWh	0 %

Life Cycle Costs CO2	Emissions													
Currency: Experience	:ncy: Expected average interest rate [%]: 4 Expected average inflation rate [%]: 2 Expected lif			verage energy cost [kr/kWh]:		1	🗸 Update							
					une (years).									
Initial cost: Annual operating cost:														
	Transcritical Si	Transcritical Subcritical		Transcritical	Subcritical									
Cost of equipment [kr]	100,000 90	0,000	Energy consu	umption (KWh)	654/3.61 (-3,640)	69113.53								
Cost of installation [kr]	60,000 6	0,000	Cost of main	tenance [kr]	25,000	25,000								
Result:														
		Trar	nscritical	Subcritical										
Effective interest rate	[%]		1.96	1.96										
Internal rate of return	[%]		34.52	-										
Total annual cost [kr]		90,474	(-3,640)	94,114										
Payback time [years]			2.7	-										
Total initial cost [kr]		160,000	0 (16%) 150	,000 (15%)										
Present value of maintenance cost [kr] 225,026 (23%) 225,026 (23%)		i,026 (23%)												
Present value of energ	gy cost [kr]	589,33	1 (61%) 622	2,094 (62%)										
Life cycle cost [kr]		974,357 (-	22,763)	997,120										
Diagram Plot														
Life cycle cost														
Г													Initial cost	
Subcritical -		Lifecycle costs = 997,120 kr												
Transcritical -	al Bachack time = 2.7 years													
						r ay buck ti	inio – z.i. youro							
0	10	00,000	200,00	0 3	600,000 4	00,000	500,000 Life cycle cost [kr]	600,000	700,000	800,000	900,000	1,000,000		

Results

ΙΡυ

- In northern countries CO2 system will have at least comparable energy consumption as traditional plants...
- In southern countries energy consumption will be higher (but LC CO2 release lower)...
- In general energy consumption depends very much on component efficiencies...

• The calculation program is available at <u>www.ipu.dk</u> for testing (it's still a beta version though)

Conclusion

5

4.5

4

3

2.5

2 01-01

31-01

Trykforhold 5.5

18

20

· For the simulation just performed

