Visteon®

Visteon R744 Technology

teoi

The Influence of the Accumulator and Internal Heat Exchanger Design as separate and combined Components on the System Behavior of a R744 A/C System

Visteon Deutschland GmbH

Marc Graaf

Saalfelden, 23th February 2005

Contents

- Design criteria accumulator
 - functions
 - influence of control strategy
 - storage volume
- Design criteria internal heat exchanger
 - functions
 - performance
 - efficiency
- Design criteria combined component design

Accumulator - functions

Accumulator – influence of control strategy

	EXV-system	Orifice tube system
45°C	370 g	370 g
30°C	292 g	289 g
20°C	323 g	255 g
5°C	361 g	212 g

Accumulator – required storage volume

	EXV-system	Orifice tube system
Maximum charge in accu	70 ml	150 ml
Condition	25°C	5°C
Leakage protection	to be added	to be added

Internal heat exchanger - functions

- Transfer heat from high pressure side to low pressure side
- Enhance system performance at high ambient temperatures
- Reduce required high pressure for optimum COP at medium ambient temperatures
- Increase COP at low and medium ambient temperatures

Internal heat exchanger - efficiency

8

Internal heat exchanger - efficiency

<u>Visteon</u>

Combined component - functions

- Accu:
- changing operating conditions - changing ambient conditions
- leakage protection
- Reduce equilibrium pressure during high load conditions

• Store non-active refrigerant due to:

- Ensure oil return to compressor
- Separate liquid and gaseous refrigerant during load changes

- Transfer heat from high pressure side to low pressure side
- Enhance system performance at high ambient temperatures
- Reduce required high pressure for optimum COP at medium ambient temperatures
- Increase COP at low ambient temperatures

1

ſſ

LP outlet inlet

HP

• Combined component: avoid influence of heat transfer into accumulator

steor

Validiation heat transfer into accumulator

Validation of risk that heat transfer from HPside evaporates Accu charge

Assumption: Accu charge is completely evaporated!

- during transcritical operation the evaporated refrigerant causes significant higher discharge pressure
- AC system operates with decreased COP

EXV-system

 $p_s = 35 \text{ bar}$ $p_d = 80 \text{ bar}$ $t_{GC,Out} = 33^{\circ}C$ $m_{Accu} = 78 \text{ g}$ COP = 2,59 EXV-system + heat transfer into Accu

$$p_s = 35 bar$$

 $p_d = 130 bar$
 $t_{GC,Out} = 33^{\circ}C$
 $m_{Accu} = 0 g$
 $COP = 1,86$

▶ Avoid any heat transfer in Accu for max COP

Visteon R744 Technology

Requirements for combined accu / ihx

for EXV system	for Orifice tube system		
Accumulator storage volume needed at			
25 °C	5 °C		
70 ml + charge protection	150 ml + charge protection		
Internal heat exchanger performance is needed at high ambient temperatures			
Heat transfer from IHX into Accu should be minimized to achieve maximum COP			

Visteon®

Visteon R744 Technology

teoi