PRESSURE CONTROLS FOR R744 CLIMATE CONTROL SYSTEMS

TEXAS INSTRUMENTS

INTRODUCTION

Observations In Auto A/C

- > Automotive Industry Searching For Alternative Refrigerants
- > New Functionalities Are Added
- > System Control More Complicated

INTRODUCTION

Consequences For Sensors > Requirements Trend Up

Introduction Under Severe Cost Pressure

Suppliers contribution to enable introduction in cost and innovation

MOUNTING POSITION CONTROLS

 \triangleright

 \geq

- Heat pump capability limits sensor mounting flexibility
- Mounting position drives specifications
 - Pressure and temperature used for A/C & heat pump control

Therefore:

- I. Integration Of Pressure And Temperature Sensor
- II. To Maintain Flexibility, All Mounting Positions Must Be Possible

CONSEQUENSES MOUNTING POSITION R134a SYSTEM vs R744 SYSTEM

Pressure Control Requirements					
		R134a	R744		
		high side liquid	discharge		
Pressure		3035	120 160	[bar]	
Temperature	Medium	80	180	[°C]	
	Ambient	125	125	[°C]	
Mol Mass		102	44	[u]	

ALTERNATIVE TECHNOLOGIES

MEMS P+T

- Die attach / Bondwires exposed to 180°C, dynamic gas flow
- Trade off between reliability (out-of-stream) and signal accuracy (into stream)
- Ceramic P+T
 - Elastomer seal
 - + Production Experience
- Discrete Silicon Strain Gauge
 - + High temperature capability
 - + Capability to separate SE and Conditioning Electronics
 - + Production Experience
 - + P&T Sensitivity
 - + Cost

MSG PRESSURE SENSOR Base Technology

Micro Fused Strain Gage

Design Assumptions:

- ✓ Hermetic Pressure Sensor (Metal 1 piece / weld)
- ✓ High Volume Manufacturability Against Minimized Cost
- ✓ Modular Build For Configuration Flexibility
- Temperature Compensated (Extreme Temperature Span)
- ✓ <2%FS Error Band (for Pressure Control)
- ✓ Diagnostics (Safety)
- ✓ High Proof/Burst Capabilities

SILICON SENSING ELEMENT

- Mono crystalline silicon gages fabricated with standard semiconductor processes
- Gage geometry defined in DRIE process. Minimizes geometry variation
- Aluminum metallization
- Standard glass bonding process attaches gages to element
- ➢ 0.5 mm x 1.5 mm x 10 µm

SENSOR DEVELOPMENT

- FEA guides sense element geometry
- Regions of tensile and compressive surface stress setup full Wheatstone bridge
- Port material:17-4PH stainless steel
- Strain gages are glass bonded over appropriate local stress field
- At full scale pressure s_{max}/s_Y= 0.2.

PT SENSOR FOR R744

Target:

Integration of pressure sensor and intrusive temperature sensor

- > Use existing sensing elements / electronics \rightarrow cost target \in 3 D
- In-flow sensing elements
- Response time & accuracy
 - \sim second(s)
 - ±5°C, target ±3°C (...)

- > Thermal Rules
 - Sensing Elements Exposed To Gas Temperatures
 - Conditioning Electronics Thermally Insulated

MSG – R744 A/C PT SENSORS

- ➢ P/T MSG
 - hermetic design
 - should enable fast T response and acceptable T- accuracy
- > 3rd Generation PT Design IN PROTO STAGE
 - 1st generation = Brake Pressure 67%
 - 2nd generation = SFF 86/89%
 - 3rd generation = Proto scratch 99+%
- T-Accuracy under investigation
 - Current 'capability' ±10°C
 - With several calibration algorithm modifications, and a A/C algorithm optimization, an accuracy of ±3°C is feasible
- Next steps
 - Further evaluate 3rd generation
 - Improve T-calibration / Accuracy
 - Design Validation

PRESSURE OUTPUT

TEXAS INSTRUMENTS

Typical Pressure Accuracy - based on average 2200 production parts

TEMPERATURE OUTPUT

Note: T signal faster than DAQ

TEMPERATURE OUTPUT

Deviation MSG P&T

-ity

TEXAS INSTRUMENTS

PT PROJECT

- ➤ 3rd Gen A evaluation February 2002
- ➢ P/T: Concept freeze 1Q03
- ➤ A sample capability 2Q03

Milestones MSG P+T				
Milestone	Due	Note		
A-samples	Apr-03			
B sample Tooling release	Apr-03	Customer commitment		
		Estimate,		
B-samples	Sep-03	limited production tools		
C-sample Tooling Release	Nov-03			
Process development	Jul-04			
C-samples	Sep-04			
PPAP	Jun-05			

ACKNOWLEDGEMENTS

Thanks to by Ministry of VROM of the Netherlands through ROB Program executed by Novem

> Thank you for the attention!

