Evaluation of Lubricants for a Carbon Dioxide Automobile A/C system

SAE 7th Alternate Refrigerant Systems Symposium June 29th, 2006

Harutomo Ikeda, Masato Kaneko, Takeo Tokiai, Akira Yoshii and Hideki Suto

Idemitsu Kosan Co.,Ltd.

The Trend of the Refrigerating Oils for CO₂

Chemical Structure of PAG

$$CH_{3}$$

$$I$$

$$CH_{3}-O-(CH-CH_{2}-O)_{m}-(CH_{2}-CH_{2}-O)_{n}-CH_{3}$$

Main Chain : Good Stability and No Hydrolysis
End Cap : Good Lubricity and Solubility
Free Design of m/n : Flexibility to alter Miscibility
Free Design of m+n : Flexibility to alter Viscosity

Comparison with PAG and POE of Bonding Energy

4

Bonding Type		C-H	C-C	C-O	C=O]
	σ -Bonding	98.9	83.1	84	84	
Bonding	π -Bonding	_	_	_	66	СН
Energy	resonance	_	-	_	24	CH ₃ -O-(CH-CH ₂ -O) _m -(CH ₂ -CH ₂ -O) _n -CH ₂
	(Total)	-	-	_	174	PAG
Bonding length (Å)		1.09	1.54	1.48	1.23	
Capped-PAG					-	
POE						P
Chemical Stability			good		bad	C-(CH ₂ -O-C-R) ₄ POE

POE : π -Bonding \rightarrow Hydrolysis , Tribochemical Reaction

Refrigerating Oil Requirement for CO₂ Automobile A/C System

(1) Starting Torque

Lower viscosity is needed even under conditions of no Gas and low temp.

Viscosity(@-40°C) of PAG and POE

		PAG#9	PAG#20	POE#17
Viscosity(@ -40° C)	mm ² /s	6483	11600	774000
Viscosity(@100°C)	mm ² /s	9.234	20.01	17.13
Viscosity Index		203	225	109
Pour Point	$^{\circ}\mathrm{C}$	-45	-45	-32.5
Density(@15°C)	g/cm ³	0.9944	1.0195	0.9719
Acid Number	mgKOH/g	0.01	0.01	0.02

Viscosity (@-40°C) for Starting Torque⁸ of PAG and POE

Temperature(℃)

(2) Oil Return

Property of Oil/CO₂ Mixture in Receiver

Miscibility of Oil and Refrigerant (Test Method)

10

Miscibility Test Apparatus

Viscosity of Oil and Refrigerant Mixture ¹¹ (Test Method)

Hermetic Type Viscometer

Miscibility of PAG and POE with CO₂

Viscosity of PAG and CO₂ Mixture

Viscosity of PAG/CO₂ Mixture and Immiscible Area

Viscosity of POE/CO₂ Mixture and Immiscible Area

Oil return property of PAG with CO₂

CO₂ P-h Diagram

Viscosity-Temperature Chart

Oil return property of POE with CO₂

Pressure-Temperature-Solubility-Viscosity Chart Oil/Ref. Name(POE#17/CO2)

CO₂ P-h Diagram

Viscosity-Temperature Chart

Viscosity of PAG and CO₂ Mixture

Oil Return Area

Lubricating Area

	-:	5℃, 3MPa		10)℃, 14MPa	
	Oil/CO2 Mixture Viscosity			Oil/CO2	Mixture Viscosity	
	(%)	$(\mathbf{mm}^2/\mathbf{s})$		(%)	$(\mathbf{mm}^2/\mathbf{s})$	
PAG#9	37/63	0.9/0.12 (Separate)	PAG#9	83/17	3.3	
PAG#20	30/70	1.6/0.12 (Separate)	PAG#20	83/17	6.4	
POE#17	40/60	0.8	POE#17	80/20	2.8	

(3) Shoe/Plate Lubricity

Shoe/Plate Friction Test

Test Condition

		Friction Test
Shoe		FC
Swash Plate		A390
Speed	(m/s)	4
Load(100N Step up)	(N)	100 ~ 9800
Temperature	(°C)	140
Oil	(cc)	200
Pressure of CO₂	(MPa)	6

Shoe/Plate Wear Tester

Friction of PAG and POE

Block on Ring Wear Test

Test Condition

Block	Al (A4032)				
Ring	Steel(SUJ2)				
Load(N)	1372				
Revolution (rpm)	300 900 180				
Test Time(min)	60				
CO2 Pressure(MPa)	2				
Oil Temperature ($^{\circ}$ C)		50			

Hermetic Type Block-on-Ring Tester

Wear of PAG and POE

(4) Bearing Fatigue Life

For Design of Bearing with Oil/CO₂ Mixture

Fatigue Life Test Method

Hermetic Type Fatigue Life Tester

Test Condition

Needle $[4.5\varphi x 5.3]$	St3(10 Needles)		
Disc		Ck67	
Speed	(rpm)	800	
Axial Load	(N)	7900	
Pmax	(GPa)	1.52	
Oil Temperatur	(°C)	90	
Oil amount	(cc)	50	
CO ₂ -Pressure	MPa)	5	

Fatigue Life of PAG and POE with CO₂

Tribochemistry of PAG

Tribochemistry of POE

(5) Stability

Reaction of Various Material with Oil/CO₂ Mixture

Thermal ,Oxidation and Hydrolytic Stability

Stability Tests Method

CO₂ Autoclave Test

		Thermal Stability Test	Oxidation Stability Test	Hydrolytic Stability Test
Temperature	(°C)		200	
Time	(days)		10	
Oil	(g)		50	
CO ₂	(g)		10	
Air	(cc)	-	50	-
H ₂ O	(ppm)	-	-	300
Catalyst			Fe,Cu,Al	

Stability of PAGs and POE with CO₂ (CO₂ Autoclave Test Results)

31

	CO_2	Thermal Stab	ility Test							
		PAG#9	PAG#20	Acid No.(mgKOH)H/g			
	Oil	Good	Good	Good	0)	0.	1	0.2	0.
Appearance	Cat .	Good	Good	Fe→ black	ſ	_				
Acid No.(mgk	KOH/g)	0.01	0.01	0.01						
	Dxidation Stab	oility Test		PAG#9		CO Ovidation Stability Tes			est Fest	
		PAG#9	PAG#20	POE#17			$\square CO H$	vdrolytic	Stability	Tost
Appearance	Oil	Good	Good	Good		_		lyui oiyuc	Stability	ICSL
	Cat .	Good	Good	Fe→ black						
Acid No.(mgK	KOH/g)	0.01	0.01	0.01	PAG#20					
	CO ₂ H	Iydrolytic Sta	bility Test		-					
		PAG#9	PAG#20	POE#17						
Appearance	Oil	Good	Good	Good	POE#17					
	Cat.	Good	Good	Fe→ black						
Acid No.(mgKOH/g)		0.01	0.01	0.26						

POE

HydrolysisRCOOR + $H_2O \rightarrow RCOOH + HOR$ Reaction with Iron RCOOR + Fe \rightarrow Fe(Black Surface)

Comparison with PAGs and POE ³² of Catalyst in Autoclave Test

Conclusion

		PAG#9	POE#17
(1)	-40°C Starting Torque	good	poor
(2)	Oil Return	poor	good
(3)	Shoe/Plate Lubricity	good	poor
(4)	Bearing Fatigue Life	good	poor
(5)	Stability	good	poor

PAG shows good characteristics for Automobile A/C with CO₂

Approval of PAG for Hermetic Compressors with CO₂

Volumetric Resistivity of PAG with CO₂

CO₂ A/C System for Fuel cell Vehicle ³⁵ with PAG

